DocumentCode :
930589
Title :
On the strong information singularity of certain stationary processes (Corresp.)
Author :
Hajek, Bruce
Volume :
25
Issue :
5
fYear :
1979
fDate :
9/1/1979 12:00:00 AM
Firstpage :
605
Lastpage :
609
Abstract :
In an exploratory paper, T. Berger studied discrete random processes which generate information slower than linearly with time. One of his objectives was to provide a physically meaningful definition of a deterministic process, and to this end he introduced the notion of strong information singularity. His work is supplemented by demonstrating that a large class of convariance stationary processes are strongly information singular with respect to a class of stationary Gaussian processes. One important consequence is that for a large class of covariance stationary processes the information rate equals that of the process associated with the Brownian motion component of the spectral representation. In an exploratory paper, T. Berger studied discrete random processes which generate information slower than linearly with time. One of his objectives was to provide a physically meaningful definition of a deterministic process, and to this end he introduced the notion of strong information singularity. His work is supplemented by demonstrating that a large class of convariance stationary processes are strongly information singular with respect to a class of stationary Gaussian processes. One important consequence is that for a large class of covariance stationary processes the information rate equals that of the process associated with the Brownian motion component of the spectral representation. In an exploratory paper, T. Berger studied discrete random In an exploratory paper, T. Berger studied discrete random processes which generate information slower than linearly with time. One of his objectives was to provide a physically meaningful definition of a deterministic process, and to this end he introduced the notion of strong information singularity. His work is supplemented by demonstrating that a large class of convariance stationary processes are strongly information singular with respect to a class of stationary Gaussian processes. One important consequence is that for a large class of covariance stationary processes the information rate equals that of the process associated with the Brownian motion component of the spectral representation.
Keywords :
Information theory; Source coding; Stochastic processes; Block codes; Decoding; Entropy; Gaussian processes; Information rates; Noise measurement; Random processes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1979.1056088
Filename :
1056088
Link To Document :
بازگشت