DocumentCode :
933128
Title :
Hierarchical-likelihood-based wavelet method for denoising signals with missing data
Author :
Kim, Donghoh ; Lee, Youngjo ; Oh, Hee-Seok
Author_Institution :
Dept. of Int. Manage., Hongik Univ., Chungnam, South Korea
Volume :
13
Issue :
6
fYear :
2006
fDate :
6/1/2006 12:00:00 AM
Firstpage :
361
Lastpage :
364
Abstract :
This letter proposes a wavelet denoising method in the presence of missing data. This approach is based on a coupling of wavelet shrinkage and hierarchical (or h)-likelihood method. The h-likelihood provides an effective imputation methodology of missing data to give wavelet estimators for signals and motivates a fast and simple algorithm. The method can be easily extended to other settings, such as image denoising. Simulation studies demonstrate empirical properties of the proposed method.
Keywords :
signal denoising; wavelet transforms; hierarchical-likelihood-based wavelet method; imputation methodology; missing data; signal denoising; Clustering algorithms; Gaussian distribution; Image denoising; Inference algorithms; Maximum likelihood estimation; Noise reduction; Pixel; Signal processing algorithms; Statistics; Wavelet coefficients; imputation; missing; wavelet denoising;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.871713
Filename :
1632068
Link To Document :
بازگشت