DocumentCode :
9344
Title :
A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization
Author :
Burger, M. ; Notarstefano, Giuseppe ; Allgower, F.
Author_Institution :
Inst. for Syst. Theor. & Autom. Control, Univ. of Stuttgart, Stuttgart, Germany
Volume :
59
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
384
Lastpage :
395
Abstract :
In this paper, we consider a general problem setup for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this setup, convex constraint sets are distributed to the network processors who have to compute the optimizer of a linear cost function subject to the constraints. We propose a novel fully distributed and asynchronous algorithm, named cutting-plane consensus, to solve the problem, based on a polyhedral outer approximation of the constraint sets. Processors running the algorithm compute and exchange linear approximations of their locally feasible sets. Independently of the number of processors in the network, each processor stores only a small number of linear constraints, making the algorithm scalable to large networks. The cutting-plane consensus algorithm is presented and analyzed for the general framework. Specifically, we prove the correctness of the algorithm, and show its robustness against communication or processor failures. Then, the cutting-plane consensus algorithm is specified to three different classes of distributed optimization problems, namely 1) inequality constrained problems, 2) robust optimization problems, and 3) almost separable optimization problems. For each one of these problem classes we solve a concrete problem and present computational results. That is, we show how to solve: position estimation in wireless sensor networks, a distributed robust linear program, and a distributed microgrid control problem.
Keywords :
approximation theory; convex programming; distributed algorithms; peer-to-peer computing; asynchronous algorithm; convex constraint set; convex distributed optimization; cutting-plane consensus algorithm; distributed algorithm; distributed microgrid control problem; distributed optimization problems; distributed robust linear program; inequality constrained problem; linear approximations; linear constraints; linear cost function; network processors; peer-to-peer networks; polyhedral approximation framework; polyhedral outer approximation; position estimation; processor failures; robust distributed optimization; robust optimization problem; separable optimization problem; wireless sensor networks; Approximation algorithms; Communication networks; Linear approximation; Optimization; Program processors; Robustness; Asynchronous algorithms; distributed optimization; dual decomposition; robust optimization;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2013.2281883
Filename :
6600797
Link To Document :
بازگشت