DocumentCode
934748
Title
Global identification of continuous-time-systems with unknown noise covariance (Corresp.)
Author
Tugnait, J.K.
Volume
28
Issue
3
fYear
1982
fDate
5/1/1982 12:00:00 AM
Firstpage
531
Lastpage
536
Abstract
Global convergence pf the maximum likelihood estimates of unknown parameters of a continuous-time stochastic linear dynamical system is investigated when the observation noise covariance is unknown. The unknown parameter set is assumed to be finite. The situation where the true parameter does not belong to the unknown parameter set is considered as well as the situation where the true model is included in the unknown parameter set. Convergence is proved under a certain sufficient condition called the identifiability condition.
Keywords
Parameter estimation; maximum-likelihood (ML) estimation; Convergence; Linear systems; Maximum likelihood estimation; Noise measurement; Parameter estimation; Stochastic resonance; Stochastic systems; Sufficient conditions; Uncertain systems; Yield estimation;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.1982.1056501
Filename
1056501
Link To Document