• DocumentCode
    934748
  • Title

    Global identification of continuous-time-systems with unknown noise covariance (Corresp.)

  • Author

    Tugnait, J.K.

  • Volume
    28
  • Issue
    3
  • fYear
    1982
  • fDate
    5/1/1982 12:00:00 AM
  • Firstpage
    531
  • Lastpage
    536
  • Abstract
    Global convergence pf the maximum likelihood estimates of unknown parameters of a continuous-time stochastic linear dynamical system is investigated when the observation noise covariance is unknown. The unknown parameter set is assumed to be finite. The situation where the true parameter does not belong to the unknown parameter set is considered as well as the situation where the true model is included in the unknown parameter set. Convergence is proved under a certain sufficient condition called the identifiability condition.
  • Keywords
    Parameter estimation; maximum-likelihood (ML) estimation; Convergence; Linear systems; Maximum likelihood estimation; Noise measurement; Parameter estimation; Stochastic resonance; Stochastic systems; Sufficient conditions; Uncertain systems; Yield estimation;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1982.1056501
  • Filename
    1056501