DocumentCode :
935971
Title :
Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function
Author :
Kieffer, John C.
Volume :
29
Issue :
1
fYear :
1983
fDate :
1/1/1983 12:00:00 AM
Firstpage :
42
Lastpage :
47
Abstract :
It is desired to encode a random variable X using an N -level quantizer Q to minimize the expected distortion E \\rho(|X-Q(X))I) , where the error weighting function \\rho is convex, strictly increasing and continuously differentiable. It is shown that if X has a log-concave density, then there exists a unique locally optimal quantizer Q \\ast and Lloyd\´s Method I may be used to find Q \\ast . Trushkin had earlier shown this result for the error weighting functions \\rho (t) \\equiv t and \\rho(t) euiv t^{2} .
Keywords :
Information theory; Mathematics; Probability density function; Random variables; Statistics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1983.1056622
Filename :
1056622
Link To Document :
بازگشت