DocumentCode :
936156
Title :
A polynomial approach to the generalized Levinson algorithm based on the Toeplitz distance
Author :
Delsarte, Philippe ; Genin, Yves V. ; Kamp, Yves
Volume :
29
Issue :
2
fYear :
1983
fDate :
3/1/1983 12:00:00 AM
Firstpage :
268
Lastpage :
278
Abstract :
A polynomial approach to the generalized Levinson algorithm based on the Toeplitz distance concept is given. It turns out that most properties of the standard Levinson algorithm admit natural generalizations, including the three-term recurrence relations, the Christoffel-Darboux formula, and the reflection coefficients (Schur-Szegö parameters) obtainable from the data via an extension of the Schur algorithm. The theory of \\sum -lossless transfer functions is shown to play the same illuminating role in the problem as the theory of Szegö orthogonal polynomials in the standard Levinson algorithm.
Keywords :
Covariance matrices; Least-squares estimation; Matrices; Polynomials; Toeplitz matrices; Algorithm design and analysis; Computational complexity; Computational efficiency; Costs; Covariance matrix; Equations; Polynomials; Reflection; Stochastic processes; Transfer functions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1983.1056642
Filename :
1056642
Link To Document :
بازگشت