DocumentCode :
936538
Title :
A nonconstructive upper bound on covering radius
Author :
Cohen, Gerard
Volume :
29
Issue :
3
fYear :
1983
fDate :
5/1/1983 12:00:00 AM
Firstpage :
352
Lastpage :
353
Abstract :
Let t(n,k) denote the minimum covering radius of a binary linear (n,k) code. We give a nonconstructive upper bound on t(n,k) , which coincides asymptotically with the known lower bound, namely n^{-1}t(n,nR)=H^{-1}(1-R)+O(n^{-l}\\log n) , where R is fixed, 0< R< 1 , and H^{-1} is the inverse of the binary entropy function.
Keywords :
Linear coding; Entropy; Hamming distance; Retirement; Upper bound; Vectors; Writing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1983.1056678
Filename :
1056678
Link To Document :
بازگشت