DocumentCode :
937024
Title :
Joint Iterative Multiuser Detection and Channel Estimation for Differentially Coded Asynchronous CDMA Systems
Author :
Talakoub, Shahram ; Shahrrava, Behnam
Author_Institution :
Univ. of Waterloo, Waterloo
Volume :
57
Issue :
1
fYear :
2008
Firstpage :
380
Lastpage :
392
Abstract :
In this paper, we propose a receiver structure that performs joint iterative multiuser detection and channel estimation for the uplink of differentially coded asynchronous direct-sequence code-division multiple-access systems in unknown multipath channels. The overall transmission scheme for each user is the serial concatenation of a recursive systematic convolutional (RSC) encoder and a differential encoder separated by an interleaver. The proposed receiver consists of two stages. The first stage performs channel estimation, soft interference cancellation, and soft-input soft-output multiuser filtering, followed by the second stage, which consists of a bank of serially concatenated single-user channel decoders and differential decoders. The single-user iterative decoder for each user consists of a powerful combination of an RSC decoder and a differential decoder, which work together in an iterative fashion. In terms of channel estimation, at the first iteration, the multipath channel is blindly estimated by exploiting the orthogonality property between the signal and noise subspaces, whereas, for the next iterations, the channel is estimated using the soft estimates of coded bits of each user provided by the single-user iterative decoders in conjunction with the output of the multiuser detector. By exchanging soft information between the different stages, the receiver performance is improved through iteration. Simulation results demonstrate that the performance of the proposed iterative multiuser detector with the integrated channel estimator approaches the single-user bound at high signal-to-noise ratio.
Keywords :
channel coding; channel estimation; code division multiple access; concatenated codes; convolutional codes; filtering theory; interference suppression; iterative decoding; multipath channels; multiuser detection; spread spectrum communication; RSC; channel estimation; differentially coded asynchronous DS-CDMA; direct-sequence code-division multiple-access system; iterative decoder; joint iterative multiuser detection; multipath channel; recursive systematic convolutional encoder; serial concatenation; single-user channel decoder; soft interference cancellation; soft-input soft-output multiuser filtering; Code-division multiple-access (CDMA) systems; Differential encoding and decoding; Iterative channel estimation; Turbo multiuser detection; differential encoding and decoding; iterative channel estimation; turbo multiuser detection;
fLanguage :
English
Journal_Title :
Vehicular Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9545
Type :
jour
DOI :
10.1109/TVT.2007.904537
Filename :
4357118
Link To Document :
بازگشت