DocumentCode :
937209
Title :
A simple proof of the Ahlswede - Csiszár one-bit theorem (Corresp.)
Author :
Gamal, Abbas El
Volume :
29
Issue :
6
fYear :
1983
fDate :
11/1/1983 12:00:00 AM
Firstpage :
931
Lastpage :
933
Abstract :
It is proved that if (X,Y) are two finite alphabet correlated sources with p(x,y)> 0 for all (x,y) \\in ({cal X} \\times {cal Y}) , and if a function F(X,Y) is \\alpha -sensitive, then the rate R of transmission from X to Y necessary to compute F(X,Y) reliably must be greater than H(X|Y) . The same result holds if the function is highly sensitive and for every x_{1} \\neq x_{2} \\in {cal X} , then the number of elements y \\in {cal Y} with p(x_{l},y) \\cdot p(x_{2}, y)> 0 is different from one.
Keywords :
Information rates; Source coding; Covariance matrix; Decoding; Encoding; Entropy; Information theory; Inspection; Linear matrix inequalities; Matrix decomposition; Probability density function; Random variables;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1983.1056742
Filename :
1056742
Link To Document :
بازگشت