DocumentCode :
937419
Title :
Partitioned linear block codes for computer memory with ´stuck-at´ defects
Author :
Heegard, Chris
Volume :
29
Issue :
6
fYear :
1983
fDate :
11/1/1983 12:00:00 AM
Firstpage :
831
Lastpage :
842
Abstract :
Linear block codes are studied for improving the reliability of message storage in computer memory with stuck-at defects and noise. The case when the side information about the state of the defects is available to the decoder or to the encoder is considered. In the former case, stuck-at cells act as erasures so that techniques for decoding linear block codes for erasures and errors can be directly applied. We concentrate on the complimentary problem of incorporating stuck-at information in the encoding of linear block codes. An algebraic model for stuck-at defects and additive errors is presented. The notion of a "partitioned" linear block code is introduced to mask defects known at the encoder and to correct random errors at the decoder. The defect and error correction capability of partitioned linear block codes is characterized in terms of minimum distances. A class of partitioned cyclic codes is introduced. A BCH-type bound for these cyclic codes is derived and employed to construct partitioned linear block codes with specified bounds on the minimum distances. Finally, a probabilistic model for the generation of stuck-at cells is presented. It is shown that partitioned linear block codes achieve the Shannon capacity for a computer memory with symmetric defects and errors.
Keywords :
Block coding; Cyclic coding; Memory fault tolerance; Block codes; Communication networks; Computer networks; Decoding; Markov processes; Queueing analysis; Roads; Stochastic processes; Telecommunication traffic; Traffic control;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1983.1056763
Filename :
1056763
Link To Document :
بازگشت