DocumentCode :
937466
Title :
Programmable analogue VLSI for radial basis function networks
Author :
Murray, A.F. ; Reeckie, H.M.
Volume :
29
Issue :
18
fYear :
1993
Firstpage :
1603
Lastpage :
1605
Abstract :
Radial basis function (RBF) networks are finding increasing use in applications involving multidimensional function interpolation and pattern classification. The major obstacle to the wider use of RBFs is the complex nature of their calculations, in particular the requirement to evaluate Euclidean distance repeatedly. Almost no hardware implementations have been reported. The authors present analogue VLSI circuits which can calculate the Euclidean norm, and compute programmable width basis functions of this norm. These novel circuits can be combined with existing ´conventional´ neural circuits, to implement complete RBF networks.
Keywords :
VLSI; analogue processing circuits; feedforward neural nets; neural chips; Euclidean norm; programmable analogue VLSI; programmable width basis functions; radial basis function networks;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19931068
Filename :
233068
Link To Document :
بازگشت