DocumentCode :
938204
Title :
Silhouette-based human pose estimation using reversible jump Markov chain Monte Carlo
Author :
Huang, S.-S. ; Fu, L.-C. ; Hsiao, P.-Y.
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Univ., Taipei, Taiwan
Volume :
42
Issue :
10
fYear :
2006
fDate :
5/11/2006 12:00:00 AM
Firstpage :
575
Lastpage :
577
Abstract :
A novel approach for recovering the human body configuration based on the silhouette is presented. By considering pose inference as traversing the difference subspaces and using a data-driven mechanism, reversible jump Markov chain Monte Carlo (RJMCMC) can explore such solution space very efficiently. Experimental results are provided to demonstrate the efficiency and effectiveness of the proposed approach.
Keywords :
Monte Carlo methods; image recognition; human pose inference; reversible jump Markov chain Monte Carlo; silhouette-based human pose estimation;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:20060044
Filename :
1633565
Link To Document :
بازگشت