DocumentCode :
938243
Title :
Some explicit formulas for the matrix exponential
Author :
Bernstein, Dennis S. ; So, Wasin
Author_Institution :
Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI, USA
Volume :
38
Issue :
8
fYear :
1993
fDate :
8/1/1993 12:00:00 AM
Firstpage :
1228
Lastpage :
1232
Abstract :
Formulas are derived for the exponential of an arbitrary 2×2 matrix in terms of either its eigenvalues or entries. These results are then applied to the second-order mechanical vibration equation with weak or strong damping. Some formulas for the exponential of n×n matrices are given for matrices that satisfy an arbitrary quadratic polynomial. Besides the above-mentioned 2×2 matrices, these results encompass involutory, rank 1, and idempotent matrices. Consideration is then given to n×n matrices that satisfy a special cubic polynomial. These results are applied to the case of a 3×3 skew symmetric matrix whose exponential represents the constant rotation of a rigid body about a fixed axis
Keywords :
eigenvalues and eigenfunctions; matrix algebra; polynomials; 2×2 matrices; 3×3 skew symmetric matrix; constant rotation; cubic polynomial; eigenvalues; explicit formulas; idempotent matrices; involutory matrices; matrix exponential; quadratic polynomial; rank 1 matrices; rigid body; second-order mechanical vibration equation; strong damping; weak damping; Control systems; Control theory; Differential equations; Eigenvalues and eigenfunctions; Kinematics; Linear systems; Pervasive computing; Quaternions; Symmetric matrices; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.233156
Filename :
233156
Link To Document :
بازگشت