• DocumentCode
    938457
  • Title

    Further classifications of codes meeting the Griesmer bound (Corresp.)

  • Author

    Helleseth, Tor

  • Volume
    30
  • Issue
    2
  • fYear
    1984
  • fDate
    3/1/1984 12:00:00 AM
  • Firstpage
    395
  • Lastpage
    403
  • Abstract
    For any (n, k, d) binary linear code, the Griesmer bound says that n \\geq \\sum _{i=0}^{k-1} \\lceil d/2^{i} \\rceil , where \\lceil x \\rceil denotes the smallest integer \\geq x . We consider codes meeting the Griesmer bound with equality. These codes have parameters \\left( s(2^{k} - 1) - \\sum _{i=1}^{p} (2^{u_{i}} - 1), k, s2^{k-1} - \\sum _{i=1}^{p} 2^{u_{i} -1} \\right) , where k > u_{1} > \\cdots > u_{p} \\geq 1 . We characterize all such codes when p = 2 or u_{i-1}-u_{i} \\geq 2 for 2 \\leq i \\leq p .
  • Keywords
    Linear coding; Block codes; Encoding; Error correction codes; Gas insulated transmission lines; Hamming distance; Information theory; Linear code; Notice of Violation;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1984.1056867
  • Filename
    1056867