DocumentCode :
938457
Title :
Further classifications of codes meeting the Griesmer bound (Corresp.)
Author :
Helleseth, Tor
Volume :
30
Issue :
2
fYear :
1984
fDate :
3/1/1984 12:00:00 AM
Firstpage :
395
Lastpage :
403
Abstract :
For any (n, k, d) binary linear code, the Griesmer bound says that n \\geq \\sum _{i=0}^{k-1} \\lceil d/2^{i} \\rceil , where \\lceil x \\rceil denotes the smallest integer \\geq x . We consider codes meeting the Griesmer bound with equality. These codes have parameters \\left( s(2^{k} - 1) - \\sum _{i=1}^{p} (2^{u_{i}} - 1), k, s2^{k-1} - \\sum _{i=1}^{p} 2^{u_{i} -1} \\right) , where k > u_{1} > \\cdots > u_{p} \\geq 1 . We characterize all such codes when p = 2 or u_{i-1}-u_{i} \\geq 2 for 2 \\leq i \\leq p .
Keywords :
Linear coding; Block codes; Encoding; Error correction codes; Gas insulated transmission lines; Hamming distance; Information theory; Linear code; Notice of Violation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1984.1056867
Filename :
1056867
Link To Document :
بازگشت