DocumentCode :
939392
Title :
A product construction for perfect codes over arbitrary alphabets (Corresp.)
Author :
Phelps, Kevin T.
Volume :
30
Issue :
5
fYear :
1984
fDate :
9/1/1984 12:00:00 AM
Firstpage :
769
Lastpage :
771
Abstract :
A general product construction for perfect single-error-correcting codes over an arbitrary alphabet is presented. Given perfect single-error-correcting codes of lengths n, m , and q + 1 over an alphabet of order q , one can construct perfect single-error-correcting codes of length (q - 1)nm + n + m over the same alphabet. Moreover, if there exists a perfect single-error-correcting code of length q + 1 over an alphabet of order q , then there exist perfect single-error-correcting codes of length n , n = (q^{t} _ 1)/(q - 1) , and (t > 0 , an integer). Finally, connections between projective planes of order q and perfect codes of length q + 1 over an alphabet of order q are discussed.
Keywords :
Error-correction coding; Automatic control; Binary sequences; Decoding; Error correction codes; Hamming distance; Particle separators; Process control;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1984.1056963
Filename :
1056963
Link To Document :
بازگشت