Title :
Mean square error approximation for wavelet-based semiregular mesh compression
Author :
Payan, Frederic ; Antonini, Marc
Author_Institution :
Lab. I3S, Univ. de Nice-Sophia Antipolis, Sophia Antipolis, France
Abstract :
The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a "naive" approximation (depending on the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.
Keywords :
computational geometry; data compression; image coding; mean square error methods; mesh generation; wavelet transforms; lifting schemes; model-based bit allocation process; reconstructed mean square error approximation; semiregular mesh geometry coding; wavelet coder; wavelet coefficient subbands; wavelet transform approximation; wavelet-based semiregular mesh compression; Bit rate; Compression algorithms; Filters; Geometry; Image reconstruction; Lattices; Mean square error methods; Quantization; Wavelet coefficients; Wavelet transforms; Weighted mean square error (MSE); biorthogonal wavelet; bit allocation; butterfly scheme; geometry coding; lifting scheme; semiregular meshes.; Algorithms; Computer Graphics; Computer Simulation; Data Compression; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Least-Squares Analysis; Models, Statistical; Numerical Analysis, Computer-Assisted; Signal Processing, Computer-Assisted; User-Computer Interface;
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
DOI :
10.1109/TVCG.2006.73