DocumentCode :
940133
Title :
Phase normalised m-sequences with the inphase decimation property {m(k)}={m(2k)}
Author :
Weinrichter, H. ; Surböck, F.
Author_Institution :
Technischen Universitÿt Wien, Institut fÿr Niederfrequenztechnik, Wien, Austria
Volume :
12
Issue :
22
fYear :
1976
Firstpage :
590
Lastpage :
591
Abstract :
The inphase decimation property of a binary sequence {f(k)} is defined such that f(k)=f(2k) for all k=0, 1, 2,¿ Given a primitive generator polynomial G(D) of degree r with its even and odd parts Ge(D) and Go(D), it is shown that there is a unique version of the corresponding m-sequence with this inphase decimation property, resulting as Ge(D)/G(D) if r is odd and Go(D)/G(D) if r is even. An m-sequence in such a phase position is termed the phase normalised version.
Keywords :
binary sequences; binary sequence; inphase decimation property; phase normalised m-sequences; primitive generator polynomial;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19760449
Filename :
4240181
Link To Document :
بازگشت