Title :
Phase normalised m-sequences with the inphase decimation property {m(k)}={m(2k)}
Author :
Weinrichter, H. ; Surböck, F.
Author_Institution :
Technischen Universitÿt Wien, Institut fÿr Niederfrequenztechnik, Wien, Austria
Abstract :
The inphase decimation property of a binary sequence {f(k)} is defined such that f(k)=f(2k) for all k=0, 1, 2,¿ Given a primitive generator polynomial G(D) of degree r with its even and odd parts Ge(D) and Go(D), it is shown that there is a unique version of the corresponding m-sequence with this inphase decimation property, resulting as Ge(D)/G(D) if r is odd and Go(D)/G(D) if r is even. An m-sequence in such a phase position is termed the phase normalised version.
Keywords :
binary sequences; binary sequence; inphase decimation property; phase normalised m-sequences; primitive generator polynomial;
Journal_Title :
Electronics Letters
DOI :
10.1049/el:19760449