Title :
Radiation simulations of top-emitting organic light-emitting devices with two- and three-microcavity structures
Author :
Lee, Jiun-Haw ; Chen, Kuan-Yu ; Hsiao, Chia-Chiang ; Chen, Hung-Chi ; Chang, Chih-Hsiang ; Kiang, Yean-Woei ; Yang, C.C.
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei
fDate :
6/1/2006 12:00:00 AM
Abstract :
We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Perot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semitransparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity
Keywords :
Fabry-Perot interferometers; electromagnetic theory of light; microcavities; organic light emitting diodes; photoluminescence; refractive index; Fabry-Perot cavity equation; color purity; complex refractive index; dielectric layer; dipole position; electromagnetic theory; emission photoluminescence spectrum; emission wavelength; intensity distribution; layer thickness; microcavity structures; oscillating dipoles; radiation simulations; semi transparent cathode; top emitting organic light-emitting devices; viewing angle characteristics; Electromagnetic devices; Electromagnetic radiation; Equations; Fabry-Perot; Guidelines; Organic light emitting diodes; Performance evaluation; Photoluminescence; Process design; Refractive index; Light-emitting diodes; organic compounds; simulation;
Journal_Title :
Display Technology, Journal of
DOI :
10.1109/JDT.2006.874503