DocumentCode :
940528
Title :
On the covering radius of binary, linear codes meeting the Griesmer bound
Author :
Busschbach, Peter B. ; Gerretzen, Michiel G L ; Van Tilborg, Henk C A
Volume :
31
Issue :
4
fYear :
1985
fDate :
7/1/1985 12:00:00 AM
Firstpage :
465
Lastpage :
468
Abstract :
Let g(k, d) = \\sum _{i=0}^{k-1} \\lceil d / 2^{i} \\rceil . By the Griesmer bound, n \\geq g(k, d) for any binary, linear [n, k, d] code. Let s = \\lceil d / 2^{k-1} \\rceil . Then, s can be interpreted as the maximum number of occurrences of a column in the generator matrix of any code with parameters [g(k, d), k, d] . Let \\rho be the covering radius of a [g(k, d), k, d] code. It will be shown that \\rho \\leq d - \\lceil s / 2 \\rceil . Moreover, the existence of a [g(k, d), k, d] code with \\rho = d - \\lceil s / 2 \\rceil is equivalent to the existence of a [g(k + 1, d), k + 1, d] code. For s \\leq 2 , all [g(k,d),k,d] codes with \\rho = d - \\lceil s / 2 \\rceil are described, while for s > 2 a sufficient condition for their existence is formulated.
Keywords :
Linear coding; Linear code; Mathematics; Sufficient conditions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1985.1057073
Filename :
1057073
Link To Document :
بازگشت