DocumentCode :
940771
Title :
Elimination of Overhead Operations in Complex Loop Structures for Embedded Microprocessors
Author :
Kavvadias, Nikolaos ; Nikolaidis, Spiridon
Author_Institution :
Artistotle Univ. of Thessaloniki, Thessaloniki
Volume :
57
Issue :
2
fYear :
2008
Firstpage :
200
Lastpage :
214
Abstract :
Looping operations impose a significant bottleneck in achieving better computational efficiency for embedded applications. In this paper, a novel zero-overhead loop controller (ZOLC) supporting arbitrary loop structures with multiple-entry and multiple-exit nodes is described and utilized to enhance embedded RISC processors. A graph formalism is introduced for representing the loop structure of application programs, which can assist in ZOLC code synthesis. Also, a portable description of a ZOLC component which can be exploited in the scope of register transfer level (RTL) synthesis for enabling its utilization is given in detail. This description is designed to be easily retargetable to single-issue RISC processors, requiring only minimal effort for this task. The ZOLC unit has been incorporated into different RISC processor models and research ASIPs at different abstraction levels (RTL VHDL and ArchC) to provide effective means for low-overhead looping without negative impact to the processor cycle time. Average performance improvements of 25.5 percent and 44 percent are feasible for a set of kernel benchmarks on an embedded RISC and an application-specific processor, respectively. A corresponding 10 percent speedup is achieved on the same RISC for a subset of MiBench applications, not necessarily featuring the examined performance-critical kernels.
Keywords :
embedded systems; flow graphs; logic design; microprocessor chips; program compilers; reduced instruction set computing; ZOLC code synthesis; application-specific processor; complex loop structure; embedded RISC processors; embedded microprocessors; graph formalism; multiple-entry/exit nodes; novel zero-overhead loop controller; program compilers; register transfer level synthesis; task control flow graph; Application specific processors; Computational efficiency; Computer aided instruction; Computer architecture; Consumer electronics; Digital signal processing; Kernel; Microprocessors; Personal digital assistants; Physics computing; Pipelines; Reduced instruction set computing; Registers; Control design; Hardware description languages; Microprocessors; Optimization; Pipeline processors; Real-time and embedded systems;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.2007.70790
Filename :
4358242
Link To Document :
بازگشت