DocumentCode :
941573
Title :
Proof of Rueppel´s linear complexity conjecture (Corresp.)
Author :
Dai, Zong Duo
Volume :
32
Issue :
3
fYear :
1986
fDate :
5/1/1986 12:00:00 AM
Firstpage :
440
Lastpage :
443
Abstract :
Rueppel has conjectured that, for all n\\geq 1 , the subsequence consisting of the first n digits of the binary sequence (1,1,0,1,0,0,0,1,0^{7},1,0^{15},1, \\cdots ) has linear complexity \\lfloor (n + 1)/2 \\rfloor . This conjecture is proved, and a minimum length generator is found for each n . The proof utilizes properties of an element in an extension field of the field of rational functions over GF (2) .
Keywords :
Sequences; Block codes; Decoding; Memoryless systems; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057174
Filename :
1057174
Link To Document :
بازگشت