DocumentCode :
942880
Title :
Sequences achieving the boundary of the entropy region for a two-source are virtually memoryless (Corresp.)
Author :
Marton, Katalin
Volume :
33
Issue :
3
fYear :
1987
fDate :
5/1/1987 12:00:00 AM
Firstpage :
443
Lastpage :
448
Abstract :
For a joint distribution {\\rm dist}(X,Y) , the function T(t)=\\min { H(Y|U): I(U \\wedge Y|X)=O, H(X|U)\\geq t} is an important characteristic. It equals the asymptotic minimum of (1/n)H(Y^{n}) for random pairs of sequences (X^{n}, Y^{n}) , where frac{1}{n} \\sum ^{n}_{i=1}{\\rm dist} X_{i} \\sim {\\rm dist} X, {\\rm dist} Y^{n}|X^{n} = ({\\rm dist} Y|X)^{n}, frac{1}{n}H(X^{n})\\geq t. We show that if, for (X^{n}, Y^{n}) as given, the rate pair [(1/n)H(X^{n}) , (1/n)H(Y^{n})] approaches the nonlinear part of the curve (t,T(t)) , then the sequence X^{n} is virtually memoryless. Using this, we determine some extremal sections of the rate region of entropy characterization problems and find a nontrivial invariant for weak asymptotic isomorphy of discrete memoryless correlated sources.
Keywords :
Entropy; Source coding; Amplitude modulation; Conferences; Decoding; Entropy; Information theory; Modulation coding; Pulse modulation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1987.1057303
Filename :
1057303
Link To Document :
بازگشت