DocumentCode :
946663
Title :
Asymptotic eigenfunctions and eigenvalues of a homogeneous integral equation
Author :
Capon, Jack
Volume :
8
Issue :
1
fYear :
1962
fDate :
1/1/1962 12:00:00 AM
Firstpage :
2
Lastpage :
4
Abstract :
The eigenfunctions and eigenvalues of a certain integral equation are of importance in the Karhunen-Loéve expansion of second-order stationary random functions. In this note the asymptotic eigenfunctions and eigenvalues of this integral equation are derived for the case where the kernel is the Fourier transform of a rational function of \\omega ^2 .
Keywords :
Eigenvalues; Integral equations; Karhunen-Loeve transforms; Eigenvalues and eigenfunctions; Fourier transforms; Information theory; Integral equations; Kernel; Laplace equations; Parameter estimation; Personal communication networks; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IRE Transactions on
Publisher :
ieee
ISSN :
0096-1000
Type :
jour
DOI :
10.1109/TIT.1962.1057679
Filename :
1057679
Link To Document :
بازگشت