DocumentCode :
949116
Title :
3-D underwater object recognition
Author :
Boulinguez, David ; Quinquis, André
Author_Institution :
Signal & Syst. Dept., Inst. Superieur d´´Electron. du Nord, Lille, France
Volume :
27
Issue :
4
fYear :
2002
fDate :
10/1/2002 12:00:00 AM
Firstpage :
814
Lastpage :
829
Abstract :
In this paper, we propose an automatic supervised classification of objects lying on the sea floor or buried in sediment layers. This pattern recognition provides a way to distinguish natural and manufactured objects and then should be helpful to detect mine, pipe-line, or wreckage. Proposed methods combine different techniques: pattern information extraction, relevant parameter search, and supervised classifier. Parameters are automatically selected using a principal component analysis to reduce misclassification rate and to simplify classifier structure. Performances of different parameters (two-dimensional and three-dimensional) are compared and discussed from testing on synthetic and real data bases.
Keywords :
buried object detection; object recognition; pattern classification; principal component analysis; sonar target recognition; 3D underwater object recognition; acoustic system; automatic supervised classification; buried object detection; mine; parametric sonar; pattern information extraction; pattern recognition; pipeline; principal component analysis; relevant parameter search; sea floor; sediment layer; supervised classifier; three-dimensional parameters; two-dimensional parameters; wreckage; Data mining; Manufacturing; Object detection; Object recognition; Pattern recognition; Performance evaluation; Principal component analysis; Sea floor; Sediments; Testing;
fLanguage :
English
Journal_Title :
Oceanic Engineering, IEEE Journal of
Publisher :
ieee
ISSN :
0364-9059
Type :
jour
DOI :
10.1109/JOE.2002.805097
Filename :
1134181
Link To Document :
بازگشت