DocumentCode :
949354
Title :
Three-View Multibody Structure from Motion
Author :
Vidal, René ; Hartley, Richard
Author_Institution :
Johns Hopkins Univ., Baltimore
Volume :
30
Issue :
2
fYear :
2008
Firstpage :
214
Lastpage :
227
Abstract :
We propose a geometric approach to 3D motion segmentation from point correspondences in three perspective views. We demonstrate that after applying a polynomial embedding to the point correspondences, they become related by the so-called multibody trilinear constraint and its associated multibody trifocal tensor, which are natural generalizations of the trilinear constraint and the trifocal tensor to multiple motions. We derive a rank constraint on the embedded correspondences from which one can estimate the number of independent motions, as well as linearly solve for the multibody trifocal tensor. We then show how to compute the epipolar lines associated with each image point from the common root of a set of univariate polynomials and the epipoles by solving a pair of plane clustering problems using Generalized Principal Component Analysis (GPCA). The individual trifocal tensors are then obtained from the second-order derivatives of the multibody trilinear constraint. Given epipolar lines and epipoles or trifocal tensors, one can immediately obtain an initial clustering of the correspondences. We use this clustering to initialize an iterative algorithm that alternates between the computation of the trifocal tensors and the segmentation of the correspondences. We test our algorithm on various synthetic and real scenes and compare it with other algebraic and iterative algorithms.
Keywords :
computational geometry; image motion analysis; image segmentation; pattern clustering; principal component analysis; solid modelling; tensors; 3D motion segmentation; epipolar lines; generalized principal component analysis; multibody trifocal tensor; multibody trilinear constraint; plane clustering problem; polynomial image point embedding; three-view multibody structure; 3-D motion segmentation; multibody structure from motion; multibody trifocal tensor and Generalized PCA (GPCA); multibody trilinear constraint;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2007.1179
Filename :
4359324
Link To Document :
بازگشت