DocumentCode :
951222
Title :
PowerNap: an efficient power management scheme for mobile devices
Author :
Olsen, C. Michael ; Narayanaswarni, C.
Author_Institution :
IBM Syst. & Technol. Group, Hopewell Junction, NY, USA
Volume :
5
Issue :
7
fYear :
2006
fDate :
7/1/2006 12:00:00 AM
Firstpage :
816
Lastpage :
828
Abstract :
We present PowerNap, an OS power management scheme, which can significantly improve the battery life of mobile devices. The key feature of PowerNap is the skipping of the periodic system timer ticks associated with the operating system. On an idle device, this modification increases the time between successive timer interrupts and enables us to put the processor/system into a more efficient low power state. This saves the energy consumed by workless timer interrupts and the excess energy consumed by the processor in less efficient low power states. PowerNap is tightly integrated with the kernel and is designed for optimal control of the latency and energy associated with transitioning in and out of the low power states. We describe an implementation of PowerNap and its impact on system software. Experiments with IBM´s WatchPad verify the ability of PowerNap to extend battery life. An analytical model that quantifies the ability of the scheme to reduce power is also presented. The model is in good agreement with experimental results. We apply the model to small form-factor devices which use processors that have a PowerDown state. In such devices, PowerNap may extend battery life by more than 42 percent for small processor workloads and for background power levels below 10 mW.
Keywords :
battery management systems; mobile computing; operating systems (computers); optimal control; software architecture; telecommunication computing; timing; PowerNap; battery life; mobile devices; operating systems; optimal control; power management scheme; timer interrupts; Analytical models; Battery management systems; Delay; Energy management; Kernel; Operating systems; Optimal control; Power system management; Power system modeling; System software; Power management; mobile systems; operating systems; processors.;
fLanguage :
English
Journal_Title :
Mobile Computing, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1233
Type :
jour
DOI :
10.1109/TMC.2006.103
Filename :
1637431
Link To Document :
بازگشت