DocumentCode :
951367
Title :
An adaptive Gaussian model for satellite image deblurring
Author :
Jalobeanu, André ; Blanc-Féraud, Laure ; Zerubia, Josiane
Author_Institution :
Ariana-Joint Res. Group, CNRS/INRIA/UNSA, Sophia Antipolis, France
Volume :
13
Issue :
4
fYear :
2004
fDate :
4/1/2004 12:00:00 AM
Firstpage :
613
Lastpage :
621
Abstract :
The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem, which can be regularized within a Bayesian context by using an a priori model of the reconstructed solution. Since real satellite data show spatially variant characteristics, we propose here to use an inhomogeneous model. We use the maximum likelihood estimator (MLE) to estimate its parameters and we show that the MLE computed on the corrupted image is not suitable for image deconvolution because it is not robust to noise. We then show that the estimation is correct only if it is made from the original image. Since this image is unknown, we need to compute an approximation of sufficiently good quality to provide useful estimation results. Such an approximation is provided by a wavelet-based deconvolution algorithm. Thus, a hybrid method is first used to estimate the space-variant parameters from this image and then to compute the regularized solution. The obtained results on high resolution satellite images simultaneously exhibit sharp edges, correctly restored textures, and a high SNR in homogeneous areas, since the proposed technique adapts to the local characteristics of the data.
Keywords :
Bayes methods; deconvolution; image reconstruction; inverse problems; maximum likelihood estimation; wavelet transforms; Bayesian context; SNR; a priori model; adaptive Gaussian model; blurred image deconvolution; inverse problem; maximum likelihood estimator; noisy image deconvolution; satellite image blurring; signal to noise ratio; space-variant parameters; wavelet-based deconvolution; Bayesian methods; Context modeling; Deconvolution; Image reconstruction; Image restoration; Inverse problems; Maximum likelihood estimation; Noise robustness; Parameter estimation; Satellites; Algorithms; Artificial Intelligence; Computer Simulation; Environmental Monitoring; Feedback; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Models, Statistical; Normal Distribution; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Spacecraft;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2003.819969
Filename :
1284396
Link To Document :
بازگشت