DocumentCode :
952741
Title :
A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI
Author :
Jian, Bing ; Vemuri, Baba C.
Author_Institution :
Univ. of Florida, Gainesville
Volume :
26
Issue :
11
fYear :
2007
Firstpage :
1464
Lastpage :
1471
Abstract :
Diffusion magnetic resonance imaging (MRI) is a relatively new imaging modality which is capable of measuring the diffusion of water molecules in biological systems noninvasively. The measurements from diffusion MRI provide unique clues for extracting orientation information of brain white matter fibers and can be potentially used to infer the brain connectivity in vivo using tractography techniques. Diffusion tensor imaging (DTI), currently the most widely used technique, fails to extract multiple fiber orientations in regions with complex microstructure. In order to overcome this limitation of DTI, a variety of reconstruction algorithms have been introduced in the recent past. One of the key ingredients in several model-based approaches is deconvolution operation which is presented in a unified deconvolution framework in this paper. Additionally, some important computational issues in solving the deconvolution problem that are not addressed adequately in previous studies are described in detail here. Further, we investigate several deconvolution schemes towards achieving stable, sparse, and accurate solutions. Experimental results on both simulations and real data are presented. The comparisons empirically suggest that nonnegative least squares method is the technique of choice for the multifiber reconstruction problem in the presence of intravoxel orientational heterogeneity.
Keywords :
biodiffusion; biomedical MRI; brain; image reconstruction; least squares approximations; medical image processing; neurophysiology; biological system; brain connectivity; brain white matter fibers; deconvolution operation; diffusion magnetic resonance imaging; diffusion tensor imaging; diffusion weighted MRI; image reconstruction algorithm; intravoxel orientational heterogeneity; multiple fiber orientations; multiple fiber reconstruction; nonnegative least squares method; orientation information extraction; tractography technique; unified computational framework; water molecule diffusion; Deconvolution; diffusion-weighted magnetic resonance imaging (DW-MRI); multifiber reconstruction; nonnegative least squares (NNLS); Algorithms; Artificial Intelligence; Brain; Computer Simulation; Diffusion Magnetic Resonance Imaging; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Models, Neurological; Nerve Fibers, Myelinated; Pattern Recognition, Automated; Regression Analysis; Reproducibility of Results; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2007.907552
Filename :
4359950
Link To Document :
بازگشت