DocumentCode :
953039
Title :
On vector Karhunen-Loeve transforms and optimal vector transforms
Author :
Xia, Xiang-Gen ; Suter, Bruce W.
Author_Institution :
Dept. of Electr. & Comput. Eng., US Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA
Volume :
5
Issue :
4
fYear :
1995
fDate :
8/1/1995 12:00:00 AM
Firstpage :
372
Lastpage :
374
Abstract :
We first prove that the vector Karhunen-Loeve (VKL) transform for any finite many vector-valued signal, x1,···,xL, exists. The VKL transform is equivalent to the scalar KL transform for the scalar-valued signal X=(x1T,···,xL T)T. Based on VKL transforms, we provide a necessary and sufficient condition for the existence of the optimal vector transforms (unitary). With the condition, one can see that the optimal unitary vector transforms do not exist in most cases, and therefore needs to use suboptimal unitary vector transforms. We then prove that the optimal nonunitary vector transform for x1,···,xL exists when all eigenvalues of the correlation matrix of the signal X are nonzero. We formulate the optimal vector transforms via the VKL transforms
Keywords :
correlation methods; eigenvalues and eigenfunctions; matrix algebra; signal processing; transforms; vectors; correlation matrix; eigenvalues; finite many vector-valued signal; necessary and sufficient condition; optimal unitary vector transforms; optimal vector transforms; scalar KL transform; scalar-valued signal; suboptimal unitary vector transforms; vector Karhunen-Loeve transforms; Bit rate; Eigenvalues and eigenfunctions; Filter bank; Karhunen-Loeve transforms; Military computing; Sufficient conditions; Transform coding; Vector quantization; Wavelet transforms;
fLanguage :
English
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8215
Type :
jour
DOI :
10.1109/76.465094
Filename :
465094
Link To Document :
بازگشت