DocumentCode :
9566
Title :
A Posteriori Error Estimation for Stochastic Static Problems
Author :
Mac, D.H. ; Clenet, S.
Author_Institution :
L2EP, Arts et Metiers ParisTech., Lille, France
Volume :
50
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
545
Lastpage :
548
Abstract :
To solve stochastic static field problems, a discretization by the finite-element method can be used. A system of equations is obtained with the unknowns (scalar potential at nodes, for example) being random variables. To solve this stochastic system, the random variables can be approximated in a finite-dimension functional space-a truncated polynomial chaos expansion. The error between the exact solution and the approximated one depends not only on the spatial mesh, but also on the discretization along the stochastic dimension. In this paper, we propose an a posteriori estimation of the error due to the discretization along the stochastic dimension.
Keywords :
chaos; estimation theory; finite element analysis; magnetostatics; polynomial approximation; random processes; stochastic processes; finite-dimension functional space; finite-element method; posteriori error estimation; random variable; stochastic magetostatic problem; stochastic static field problem; truncated polynomial chaos expansion; Error analysis; Finite element analysis; Mathematical model; Polynomials; Stochastic processes; Vectors; Error estimation; finite-element method (FEM); magnetostatics; polynomial chaos expansion (PCE); stochastic problems;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2281103
Filename :
6749207
Link To Document :
بازگشت