DocumentCode :
959399
Title :
Identifiability issues in noisy ICA
Author :
Davies, Mike
Author_Institution :
DSP Group, Univ. of London, UK
Volume :
11
Issue :
5
fYear :
2004
fDate :
5/1/2004 12:00:00 AM
Firstpage :
470
Lastpage :
473
Abstract :
We consider the identifiability of the statistical model for noisy independent component analysis showing that while the mixing process is identifiable, the noise covariance is only partially so. This raises questions as to the performance of certain maximum-likelihood algorithms for blind source separation in the presence of noise.
Keywords :
blind source separation; independent component analysis; maximum likelihood estimation; signal denoising; signal reconstruction; signal sources; blind source separation; maximum-likelihood algorithms; noise covariance; noisy ICA; noisy independent component analysis; statistical model identifiability; Background noise; Blind source separation; Covariance matrix; Digital signal processing; Gaussian noise; Helium; Higher order statistics; Independent component analysis; Noise reduction; Source separation;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2004.826508
Filename :
1288110
Link To Document :
بازگشت