Title :
Linear interpolation revitalized
Author :
Blu, Thierry ; Thévenaz, Philippe ; Unser, Michael
Author_Institution :
Biomed. Imaging Group FSTI/IOA, Swiss Fed. Inst. of Technol. Lausanne, Switzerland
fDate :
5/1/2004 12:00:00 AM
Abstract :
We present a simple, original method to improve piecewise-linear interpolation with uniform knots: we shift the sampling knots by a fixed amount, while enforcing the interpolation property. We determine the theoretical optimal shift that maximizes the quality of our shifted linear interpolation. Surprisingly enough, this optimal value is nonzero and close to 1/5. We confirm our theoretical findings by performing several experiments: a cumulative rotation experiment and a zoom experiment. Both show a significant increase of the quality of the shifted method with respect to the standard one. We also observe that, in these results, we get a quality that is similar to that of the computationally more costly "high-quality" cubic convolution.
Keywords :
approximation theory; error analysis; image sampling; interpolation; optimisation; piecewise linear techniques; recursive filters; splines (mathematics); approximation methods; cubic convolution; cumulative rotation experiment; error analysis; linear interpolation revitalized; piecewise-linear interpolation; recursive digital filters; shifted linear interpolation; spline functions; theoretical optimal shift; Computational efficiency; Convolution; Digital filters; Error analysis; Interpolation; Kernel; Piecewise linear approximation; Piecewise linear techniques; Sampling methods; Spline; Algorithms; Feedback; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Linear Models; Numerical Analysis, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Subtraction Technique; Video Recording;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2004.826093