• DocumentCode
    960984
  • Title

    Properties of superconducting weak links prepared by ion implantation and by electron beam lithography

  • Author

    Harris, E.P. ; Laibowitz, R.B.

  • Author_Institution
    IEEE TMAG
  • Volume
    13
  • Issue
    1
  • fYear
    1977
  • fDate
    1/1/1977 12:00:00 AM
  • Firstpage
    724
  • Lastpage
    730
  • Abstract
    In this paper, we present our latest results on the properties of superconducting weak links prepared in Mo films by ion-implantation and in Nb films by electron-beam lithography. In the case of the ion-implanted weak links, which structurally resemble proximity-effect bridges, we find that the static properties are quite well described by a recent theory of Likharev and Yakobson. We further find that the rf response of these weak links is in excellent agreement with quasistatic resistively-shunted-junction model calculations based on a sinusoidal current-phase relation at those temperatures for which such a current-phase relation is predicted by the static theory of Likharev and Yakob-son. For the e-beam fabricated Nb bridges, which have the Dayem bridge geometry, our sample preparation techniques have allowed us to produce bridges and two-junction interferometers in which the link dimensions are as small as about 2000 Angstroms. We find that Josephson effects are observable in these bridges even when the bridge dimensions exceed the temperature-dependent coherence length by about an order of magnitude, but are still less than the effective thin-film penetration depth.
  • Keywords
    Electron radiation effects; Ion implantation; Josephson devices; Bridges; Electron beams; Geometry; Interferometers; Ion implantation; Lithography; Niobium; Predictive models; Superconducting films; Temperature;
  • fLanguage
    English
  • Journal_Title
    Magnetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9464
  • Type

    jour

  • DOI
    10.1109/TMAG.1977.1059315
  • Filename
    1059315