Abstract :
Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced- dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected images on a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.
Keywords :
data visualisation; force feedback; haptic interfaces; rendering (computer graphics); 2D haptic interface; 2D knot diagrams; 2D pen-and-paper; 2D shadow-driven editing protocol; 3D architectural design; 3D mathematical knots; 4D haptic visualization; 4D shapes; blackboard skills; collision-sensing haptics; force feedback; higher-dimensional objects; natural analogy; reactive 3D shadow-space controllers; reduced- dimension shadows; two-dimensional floor plans; Education; Floors; Geometry; Graphics; Haptic interfaces; Mathematical model; Protocols; Rendering (computer graphics); Shape; Visualization; haptics; knot theory; visualization;