DocumentCode :
966588
Title :
Selection of model parameters for off-line parameter estimation
Author :
Li, Rujun ; Henson, Michael A. ; Kurtz, Michael J.
Author_Institution :
Dept. of Chem. Eng., Louisiana State Univ., Baton Rouge, LA, USA
Volume :
12
Issue :
3
fYear :
2004
fDate :
5/1/2004 12:00:00 AM
Firstpage :
402
Lastpage :
412
Abstract :
Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).
Keywords :
chemical reactors; eigenvalues and eigenfunctions; nonlinear dynamical systems; polymerisation; principal component analysis; recursive estimation; vectors; Fisher information matrix; eigenvalues; kinetic parameter estimation; mechanistic dynamic model; model parameter selection; offline parameter estimation; polymerization reactor; principal component analysis; recursive algorithm; sensitivity vector; steady-state parameter-output sensitivity matrix; vector spaces; Inductors; Kinetic theory; Laboratories; Parameter estimation; Plastics industry; Polymers; Recursive estimation; Steady-state; Vectors; Yield estimation;
fLanguage :
English
Journal_Title :
Control Systems Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6536
Type :
jour
DOI :
10.1109/TCST.2004.824799
Filename :
1291410
Link To Document :
بازگشت