Title :
Class-Based Feature Matching Across Unrestricted Transformations
Author :
Bart, Evgeniy ; Ullman, Shimon
Author_Institution :
California Inst. of Technol., Pasadena, CA
Abstract :
We develop a novel method for class-based feature matching across large changes in viewing conditions. The method is based on the property that when objects share a similar part, the similarity is preserved across viewing conditions. Given a feature and a training set of object images, we first identify the subset of objects that share this feature. The transformation of the feature´s appearance across viewing conditions is determined mainly by properties of the feature, rather than of the object in which it is embedded. Therefore, the transformed feature will be shared by approximately the same set of objects. Based on this consistency requirement, corresponding features can be reliably identified from a set of candidate matches. Unlike previous approaches, the proposed scheme compares feature appearances only in similar viewing conditions, rather than across different viewing conditions. As a result, the scheme is not restricted to locally planar objects or affine transformations. The approach also does not require examples of correct matches. We show that by using the proposed method, a dense set of accurate correspondences can be obtained. Experimental comparisons demonstrate that matching accuracy is significantly improved over previous schemes. Finally, we show that the scheme can be successfully used for invariant object recognition.
Keywords :
feature extraction; image matching; object recognition; class-based feature matching; invariant object recognition; locally planar objects; object images; Feature matching; invariant recognition; parts.; Algorithms; Artificial Intelligence; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Pattern Recognition, Automated; Sensitivity and Specificity; Subtraction Technique;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2007.70818