Title :
Recursive high-resolution reconstruction of blurred multiframe images
Author :
Kim, S.P. ; Su, Wen-Yu
Author_Institution :
Dept. of Electr. Eng., Polytech. Univ., Brooklyn, NY, USA
fDate :
10/1/1993 12:00:00 AM
Abstract :
An approach to obtaining high-resolution image reconstruction from low-resolution, blurred, and noisy multiple-input frames is presented. A recursive-least-squares approach with iterative regularization is developed in the discrete Fourier transform (DFT) domain. When the input frames are processed recursively, the reconstruction does not converge in general due to the measurement noise and ill-conditioned nature of the deblurring. Through the iterative update of the regularization function and the proper choice of the regularization parameter, good high-resolution reconstructions of low-resolution, blurred, and noisy input frames are obtained. The proposed algorithm minimizes the computational requirements and provides a parallel computation structure since the reconstruction is done independently for each DFT element. Computer simulations demonstrate the performance of the algorithm
Keywords :
fast Fourier transforms; image reconstruction; iterative methods; least squares approximations; DFT domain; RLS method; blurred multiframe images; discrete Fourier transform; high-resolution image reconstruction; iterative regularization; noisy multiple-input frames; parallel computation structure; recursive-least-squares approach; Additive noise; Application software; Computer simulation; Concurrent computing; Equations; Image reconstruction; Image resolution; Image restoration; Iterative algorithms; Iterative methods;
Journal_Title :
Image Processing, IEEE Transactions on