Title :
Linear Regression With a Sparse Parameter Vector
Author :
Larsson, Erik G. ; Selén, Yngve
Author_Institution :
Sch. of Electr. Eng., R. Inst. of Technol., Stockholm
Abstract :
We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive the minimum mean-square error (MMSE) estimate of the parameter vector and a computationally efficient approximation of it. We also derive an empirical-Bayesian version of the estimator, which does not need any a priori information, nor does it need the selection of any user parameters. As a byproduct, we obtain a powerful model ("basis") selection tool for sparse models. The performance and robustness of our new estimators are illustrated via numerical examples
Keywords :
Bayes methods; least mean squares methods; regression analysis; signal processing; Bayesian framework; MMSE; linear regression; minimum mean-square error; signal processing; sparse parameter vector; Bayesian methods; Estimation error; Input variables; Linear regression; Maximum likelihood estimation; Parameter estimation; Robustness; Sparse matrices; Vectors; White noise; Basis selection; Bayesian inference; Lasso; linear regression; minimum mean-square error (MMSE) estimation; model averaging; model selection; sparse models; variable selection;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2006.887109