DocumentCode :
969249
Title :
Noncausal Gauss Markov random fields: parameter structure and estimation
Author :
Balram, Nikhil ; Moura, Jose M F
Author_Institution :
IBM, Boca Raton, FL, USA
Volume :
39
Issue :
4
fYear :
1993
fDate :
7/1/1993 12:00:00 AM
Firstpage :
1333
Lastpage :
1355
Abstract :
The parameter structure of noncausal homogeneous Gauss Markov random fields (GMRF) defined on finite lattices is studied. For first-order (nearest neighbor) and a special class of second-order fields, a complete characterization of the parameter space and a fast implementation of the maximum likelihood estimator of the field parameters are provided. For general higher order fields, tight bounds for the parameter space are presented and an efficient procedure for ML estimation is described. Experimental results illustrate the application of the approach presented and the viability of the present method in fitting noncausal models to 2-D data
Keywords :
Markov processes; information theory; lattice theory and statistics; maximum likelihood estimation; parameter estimation; random processes; signal processing; 2-D data; MLE; finite lattices; first order fields; higher order fields; maximum likelihood estimator; noncausal homogeneous Gauss Markov random fields; parameter estimation; parameter space; parameter structure; second-order fields; tight bounds; Gaussian processes; Image processing; Iterative algorithms; Lattices; Markov random fields; Maximum likelihood estimation; Multidimensional signal processing; Parameter estimation; Partial differential equations; Signal processing algorithms;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.243450
Filename :
243450
Link To Document :
بازگشت