DocumentCode :
971100
Title :
An EnestrÖm-Kakeya Theorem for Hermitian Polynomial Matrices
Author :
Dirr, Gunther ; Wimmer, Harald K.
Author_Institution :
Univ. of Wurzburg, Wurzburg
Volume :
52
Issue :
11
fYear :
2007
Firstpage :
2151
Lastpage :
2153
Abstract :
We extend the Enestroumlm-Kakeya theorem and its refinement by Hurwitz to polynomial matrices with positive semidefinite coefficients. We determine an annular region containing the zeros of . A stability result for systems of linear difference equations is given as an application.
Keywords :
Hermitian matrices; difference equations; polynomial matrices; Enestrom-Kakeya theorem; Hermitian polynomial matrices; annular region; linear difference equations; positive semidefinite coefficients; Asymptotic stability; Difference equations; Discrete wavelet transforms; Eigenvalues and eigenfunctions; Filters; Finite wordlength effects; Polynomials; Stability analysis; Transformers; Wavelet analysis; Block companion matrix; EnestrÖm-Kakeya theorem; polynomial matrices; root location; system of difference equations; zeros of polynomials;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2007.908340
Filename :
4380500
Link To Document :
بازگشت