DocumentCode :
971266
Title :
Evolutionary learning of nearest-neighbor MLP
Author :
Zhao, Qiangfu ; Higuchi, Tatsuo
Author_Institution :
Multimedia Device Lab., Aizu Univ., Japan
Volume :
7
Issue :
3
fYear :
1996
fDate :
5/1/1996 12:00:00 AM
Firstpage :
762
Lastpage :
767
Abstract :
The nearest-neighbor multilayer perceptron (NN-MLP) is a single-hidden-layer network suitable for pattern recognition. To design an NN-MLP efficiently, this paper proposes a new evolutionary algorithm consisting of four basic operations: recognition, remembrance, reduction, and review. Experimental results show that this algorithm can produce the smallest or nearly smallest networks from random initial ones
Keywords :
learning (artificial intelligence); multilayer perceptrons; pattern recognition; evolutionary learning; nearest-neighbor multilayer perceptron; pattern recognition; reduction; remembrance; review; single-hidden-layer network; Algorithm design and analysis; Counting circuits; Evolutionary computation; Fires; Helium; Iterative algorithms; Multilayer perceptrons; Neurons; Prototypes; Vector quantization;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.501733
Filename :
501733
Link To Document :
بازگشت