DocumentCode :
978242
Title :
Josephson effects in Nb3Sn microbridges
Author :
Lee, T.W. ; Falco, Charles M.
Author_Institution :
IEEE TMAG
Volume :
17
Issue :
1
fYear :
1981
fDate :
1/1/1981 12:00:00 AM
Firstpage :
85
Lastpage :
87
Abstract :
We have studied Josephson effects in long narrow Nb3Sn microbridges at temperatures up to 17 K. These microbridges are formed by photolithographic techniques and subsequently subjected to controlled electrical discharges to modify the intrinsic Tcof the bridge region. The bridges exhibit 10 GHz micro wave steps in their I-V characteristics whose amplitudes are in excellent agreement with the Resistively Shunted Junction (RSJ) model. I-V characteristics (with and without microwaves) can be fit assuming an effective temperature approximately 15 K above the bath temperature. We have also investigated in detail structures in the I-V characteristics in the absence of microwaves. We show experimentally that phase-slip centers are induced at weak superconducting positions along the bridge when the S-N boundary of an expanding hot spot reaches within a thermal healing distance. The critical current of the phase-slip center thus formed exhibits a temperature dependence (1-T/Tc)1/2instead of the usual mean field result (1-T/Tc)3/2.
Keywords :
Electromagnetic radiation effects; Josephson devices; Bridges; Critical current; Josephson effect; Josephson junctions; Niobium; Superconducting microwave devices; Temperature control; Temperature dependence; Thermal expansion; Tin;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.1981.1060927
Filename :
1060927
Link To Document :
بازگشت