Title :
Noncausal 2-D spectrum estimation for direction finding
Author :
Hansen, Richard R., Jr. ; Chellappa, Rama
Author_Institution :
Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA
fDate :
1/1/1990 12:00:00 AM
Abstract :
A two-dimensional noncausal autoregressive (NCAR) plus additive noise model-based spectrum estimation method is presented for planar array data typical of signals encountered in array processing applications. Since the likelihood function for NCAR plus noise data is nonlinear in the model parameters and is further complicated by the unknown variance of the additive noise, computationally intensive gradient search algorithms are required for computing the estimates. If a doubly periodic lattice is assumed, the complexity of the approximate maximum likelihood (ML) equation is significantly reduced without destroying the theoretical asymptotic properties of the estimates and degrading the observed accuracy of the estimated spectra. Initial conditions for starting the approximate ML computation are suggested. Experimental results that can be used to evaluate the signal-plus-noise approach and compare its performance to those of signal-only methods are presented for Gaussian and simulated planar array data. Statistics of estimated spectrum parameters are given, and estimated spectra for signals with close spatial frequencies are shown. The approximate ML parameter estimate´s asymptotic properties, such as consistency and normality, are established, and lower bounds for the estimate´s errors are derived, assuming that the data are Gaussian
Keywords :
parameter estimation; signal processing; spectral analysis; Gaussian data; additive noise model-based; array processing; computationally intensive gradient search algorithms; direction finding; doubly periodic lattice; maximum likelihood equation; parameter estimation; planar array data; spectrum estimation; two-dimensional noncausal autoregressive; Additive noise; Array signal processing; Frequency estimation; Lattices; Maximum likelihood estimation; Nonlinear equations; Parameter estimation; Planar arrays; Signal processing; Spectral analysis;
Journal_Title :
Information Theory, IEEE Transactions on