Title :
Numerical solution of the stationary state Schrodinger equation using transparent boundary conditions
Author_Institution :
Univ. of North Carolina, Wilmington, NC, USA
Abstract :
To solve the discrete version of the stationary state Schrodinger equation to Numerov accuracy, the author uses boundary conditions at the limits of the computational domain that mimic an interval of infinite extent. He also describes methods for finding particle energies, scattering coefficients, and partial-wave phase shifts.
Keywords :
Schrodinger equation; boundary-value problems; Numerov accuracy; partial-wave phase shifts; particle energies; scattering coefficients; stationary state Schrodinger equation; transparent boundary conditions; Boundary conditions; Computational efficiency; Difference equations; Differential equations; Eigenvalues and eigenfunctions; Particle scattering; Schrodinger equation; Stationary state; Taylor series; Writing; Schrodinger equations; boundary conditions; state equations;
Journal_Title :
Computing in Science & Engineering
DOI :
10.1109/MCSE.2006.74