DocumentCode :
987368
Title :
Maximum-likelihood decoding of Reed-Solomon codes is NP-hard
Author :
Guruswami, Venkatesan ; Vardy, Alexander
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA, USA
Volume :
51
Issue :
7
fYear :
2005
fDate :
7/1/2005 12:00:00 AM
Firstpage :
2249
Lastpage :
2256
Abstract :
Maximum-likelihood decoding is one of the central algorithmic problems in coding theory. It has been known for over 25 years that maximum-likelihood decoding of general linear codes is NP-hard. Nevertheless, it was so far unknown whether maximum-likelihood decoding remains hard for any specific family of codes with nontrivial algebraic structure. In this paper, we prove that maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes. We moreover show that maximum-likelihood decoding of Reed-Solomon codes remains hard even with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
Keywords :
Reed-Solomon codes; linear codes; maximum likelihood decoding; optimisation; NP-hard problems; Reed-Solomon codes; central algorithmic problem; linear codes; maximum-likelihood decoding; nontrivial algebraic structure; Computer science; Engineering profession; Galois fields; Linear code; Mathematics; Maximum likelihood decoding; NP-complete problem; Vectors; Linear codes; NP- hard problems; Reed–Solomon codes; maximum-likelihood decoding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2005.850102
Filename :
1459041
Link To Document :
بازگشت