DocumentCode :
990865
Title :
An efficient algorithm for calculating the likelihood and likelihood gradient of ARMA models
Author :
Burshtein, David
Author_Institution :
Dept. of Electr. Eng.-Syst., Tel-Aviv Univ., Israel
Volume :
38
Issue :
2
fYear :
1993
fDate :
2/1/1993 12:00:00 AM
Firstpage :
336
Lastpage :
340
Abstract :
Exact analytical expressions are obtained for the likelihood and likelihood gradient stationary autoregressive moving average (ARMA) models. Denote the sample size by N, the autoregressive order by p, and the moving average order by q. The calculation of the likelihood requires (p+2q+1)N +o(N) multiply-add operations, and the calculation of the likelihood gradient requires (2p+6q+2)N+o(N) multiply-add operations. These expressions may be used to obtain an iterative, Newton-Raphson-type converging algorithm, with superlinear convergence rate, that computes the maximum-likelihood estimator in (2 p+6q+2)N+o(N) multiply-add operations per iteration
Keywords :
convergence of numerical methods; probability; statistical analysis; ARMA models; Newton-Raphson-type converging algorithm; autoregressive moving average; likelihood gradient; maximum-likelihood estimator; probability; statistical analysis; superlinear convergence rate; Algorithm design and analysis; Approximation algorithms; Autoregressive processes; Computational efficiency; Convergence; Equations; Iterative algorithms; Kalman filters; Maximum likelihood estimation; Parameter estimation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.250487
Filename :
250487
Link To Document :
بازگشت