DocumentCode :
991114
Title :
An ordinary differential equation technique for continuous-time parameter estimation
Author :
DeWolf, Douglas G. ; Wiberg, Donald M.
Author_Institution :
Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
Volume :
38
Issue :
4
fYear :
1993
fDate :
4/1/1993 12:00:00 AM
Firstpage :
514
Lastpage :
528
Abstract :
An ordinary differential equation technique is developed via averaging theory and weak convergence theory to analyze the asymptotic behavior of continuous-time recursive stochastic parameter estimators. This technique is an extension of L. Ljung´s (1977) work in discrete time. Using this technique, the following results are obtained for various continuous-time parameter estimators. The recursive prediction error method, with probability one, converges to a minimum of the likelihood function. The same is true of the gradient method. The extended Kalman filter fails, with probability one, to converge to the true values of the parameters in a system whose state noise covariance is unknown. An example of the extended least squares algorithm is analyzed in detail. Analytic bounds are obtained for the asymptotic rate of convergence of all three estimators applied to this example
Keywords :
Kalman filters; convergence of numerical methods; differential equations; least squares approximations; parameter estimation; analytic bounds; asymptotic behavior; asymptotic rate of convergence; averaging theory; continuous-time recursive stochastic parameter estimators; extended Kalman filter; extended least squares algorithm; gradient method; ordinary differential equation technique; parameter estimation; recursive prediction error method; weak convergence theory; Adaptive control; Books; Convergence; Differential equations; Gradient methods; Least squares methods; Parameter estimation; Recursive estimation; Riccati equations; Stochastic processes;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.250521
Filename :
250521
Link To Document :
بازگشت