Title :
Adaptive fuzzy sliding-mode control for induction servomotor systems
Author :
Lin, Chih-Min ; Hsu, Chun-fei
Author_Institution :
Dept. of Electr. Eng., Yuan-Ze Univ., Tao-Yuan, Taiwan
fDate :
6/1/2004 12:00:00 AM
Abstract :
An adaptive fuzzy sliding-mode control design method is proposed for induction servomotor system control. The proposed adaptive fuzzy sliding-mode control system is comprised of a fuzzy controller and a compensation controller. The fuzzy controller is the main tracking controller, which is used to approximate an ideal computational controller. The compensation controller is designed to compensate for the difference between the ideal computational controller and the fuzzy controller. A tuning methodology is derived to tune the premise and consequence parts of the fuzzy rules. The online tuning algorithm is derived in the Lyapunov sense; thus, the stability of the control system can be guaranteed. Moreover, to relax the requirement for the uncertain bound in the compensation controller, an estimation mechanism is investigated to observe the uncertain bound, so that the chattering phenomena of the control efforts can be relaxed. To illustrate the effectiveness of the proposed design method, a comparison between a conventional fuzzy control and the proposed adaptive fuzzy sliding-mode control is made. Simulation and experimental results verify that the proposed adaptive fuzzy sliding-mode control design method can achieve favorable control performance with regard to parameter variations and external disturbances.
Keywords :
Lyapunov methods; adaptive control; compensation; fuzzy control; induction motors; machine control; servomotors; stability; variable structure systems; Lyapunov sense; adaptive control; compensation controller; computational controller; estimation mechanism; fuzzy control; induction servomotor systems; online tuning algorithm; sliding-mode control; Adaptive control; Adaptive systems; Control systems; Design methodology; Fuzzy control; Fuzzy systems; Programmable control; Servomotors; Sliding mode control; Stability; Adaptive control; fuzzy control; induction servomotor; sliding-mode control;
Journal_Title :
Energy Conversion, IEEE Transactions on
DOI :
10.1109/TEC.2003.821859