DocumentCode :
993732
Title :
Computational modelling identifies the impact of subtle anatomical variations between amphibian and mammalian skeletal muscle on spatiotemporal calcium dynamics
Author :
Groenendaal, W. ; Jeneson, J.A.L. ; Verhoog, P.J. ; van Riel, N.A.W. ; Ten Eikelder, H.M.M. ; Nicolay, Klaas ; Hilbers, P.A.J.
Author_Institution :
Dept. of Biomed. Eng.,, Eindhoven Univ. of Technol., Eindhoven
Volume :
2
Issue :
6
fYear :
2008
fDate :
11/1/2008 12:00:00 AM
Firstpage :
411
Lastpage :
422
Abstract :
The physical sites of calcium entry and exit in the skeletal muscle cell are distinct and highly organised in space. It was investigated whether the highly structured spatial organisation of sites of Ca2+ release, uptake and action in skeletal muscle cells substantially impacts the dynamics of cytosolic Ca2+ handling and thereby the physiology of the cell. Hereto, the spatiotemporal dynamics of the free calcium distribution in a fast-twitch (FT) muscle sarcomere was studied using a reaction-diffusion computational model for two genotypes with known anatomical differences. A computational model of a murine FT muscle sarcomere is developed, de novo including a closed calcium mass balance to simulate spatiotemporal high stimulation frequency calcium dynamics at 35degC. Literature data on high-frequency calcium dye measurements were used as a first step towards model validation. The murine and amphibian sarcomere models were phenotypically distinct to capture known differences in positions of troponin C, actindegmyosin overlap and calcium release within the sarcomere between frog and mouse. The models predicted large calcium gradients throughout the myoplasm as well as differences in calcium concentrations near the mitochondria of frog and mouse. Furthermore, the predicted Ca2+ concentration was high at positions where Ca2+ has a regulatory function, close to the mitochondria and troponin C.
Keywords :
biology computing; calcium; cellular biophysics; muscle; reaction-diffusion systems; spatiotemporal phenomena; Ca2+ release; Ca2+ uptake; actin-myosin overlap; amphibian skeletal muscle; cytosolic Ca2+ handling; fast-twitch muscle sarcomere; frog; mammalian skeletal muscle; mitochondria; mouse; myoplasm; reaction-diffusion computational model; skeletal muscle cells; spatiotemporal calcium dynamics; subtle anatomical variation; troponin C;
fLanguage :
English
Journal_Title :
Systems Biology, IET
Publisher :
iet
ISSN :
1751-8849
Type :
jour
DOI :
10.1049/iet-syb:20070050
Filename :
4677820
Link To Document :
بازگشت