DocumentCode :
9958
Title :
A Modified Meshless Local Petrov–Galerkin Applied to Electromagnetic Axisymmetric Problems
Author :
Soares, Ramon D. ; Moreira, F.J.S. ; Mesquita, R.C. ; Lowther, David A. ; Lima, Naisses Z.
Author_Institution :
Grad. Program in Electr. Eng., Fed. Univ. of Minas Gerais, Belo Horizonte, Brazil
Volume :
50
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
513
Lastpage :
516
Abstract :
A modified meshless local Petrov-Galerkin for an electromagnetic axisymmetric problem is presented in this paper. The method uses the shape functions generated by the radial point interpolation method with a modified T-scheme to select the support nodes, and also a new and malleable strategy to determine the test domains. The convergence of the method is evaluated using a coaxial cavity problem and it is compared with the finite-element method for two different meshes: one with a good quality mesh and another partially composed to bad quality elements. The total execution time using both methods is also compared.
Keywords :
Galerkin method; convergence of numerical methods; electromagnetism; interpolation; coaxial cavity problem; convergence; electromagnetic axisymmetric problems; modified T-scheme; modified meshless local Petrov-Galerkin method; radial point interpolation method; shape functions; Cavity resonators; Convergence; Electromagnetics; Finite element analysis; Interpolation; Polynomials; Shape; Axisymmetric problems; convergence of numerical methods; meshless local Petrov–Galerkin (MLPG); meshless methods; radial point interpolation method (PIM);
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2284472
Filename :
6749241
Link To Document :
بازگشت